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A jumping process, defined in terms of the jump size and waiting time distributions, is presented. The
jumping rate depends on the process value. The process, which is Markovian and stationary, relaxes to an
equilibrium and is characterized by a power-law autocorrelation function. Therefore, it can serve as a model of
1/ f noise as well as of the stochastic force in the generalized Langevin equation. This equation is solved for
noise correlations,1/t; the resulting velocity distribution has sharply falling tails. The system preserves
memory about the initial condition for a very long time.
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I. INTRODUCTION

A jumping process can be defined in terms of two prob-
ability distributions which determine the jump size and the
waiting time between consecutive jumps. One usually as-
sumes that the two distributions are independent of each
other. Such a process is often regarded as a generalized form
of the random walk and used to describe diffusive transport.
That approach, known as the continuous-time random walk
theory [1], is able to account for various forms of diffusion,
both normal and anomalous, by a suitable choice of the prob-
ability distributions defining the process[2]. Power-law de-
pendences are especially interesting[3,4]. A stochastic tra-
jectory characterized by jump sizes so distributed exhibits a
pattern typical for Lévy flights and features systems that re-
veal enhanced diffusion[5]. On the other hand, long tails of
the waiting time distribution(long rests) evoke the opposite
effect: they are responsible for subdiffusion[2,6]. Processes
that possess such tails are often treated in terms of the frac-
tional diffusion equation[7–10].

For uniform distribution of jumps in time, i.e., if the wait-
ing time probability density has an exponential form, the
jumping process relaxes to some stationary equilibrium. The
kangaroo process(KP) [11] provides a simple and well-
known example. Instead of a jump size distribution, this pro-
cess assumes a probability distribution of the process value
after the jump and, in addition, a jumping rate which de-
pends on the process value. An advantage of the KP from the
point of view of possible applications stems from the fact
that it can be easily constructed for arbitrary correlations.
The need for models of correlated noises is obvious. For
example, long correlations, in both space and time, arise as a
result of the fast mode removal procedure[12–14]. Long
tails of the correlation function emerge also in the relaxation
process of a system coupled to a fractal heat bath via a ran-
dom matrix interaction[15]. In those cases the stochastic
dynamics obeys the generalized, non-Markovian, Langevin
equation and the Monte Carlo simulation of solutions re-
quires a specific model of the noise. Unfortunately, the KP is
not suitable to model noises with power-law correlations: the
distribution of the stochastic variable during the trajectory
evolution is biased because the waiting time distribution
changes its shape when it is inserted into the generalized
Langevin equation[16]. As a result, the relaxation to thermal
equilibrium cannot be achieved.

In this paper we consider a simple power-law correlated
jumping process which is exempt from that difficulty. It can
be regarded as a generalization of the KP in which one of the
quantities defining the process—the probability density dis-
tribution after a jump—has been substituted by the jump size
probability distribution. A one-dimensional version of the
generalized kangaroo process has been presented in Ref.
[17]. The objective of this paper is not only to analyze the
master equation for the process but above all to obtain the
stochastic variable itself by solving a stochastic equation.
Therefore the presented procedure can be utilized as a noise
model for numerical simulations of the stochastic trajectories
in the framework of the Langevin formalism. We define the
process and discuss the corresponding equations in Sec. II.
The expression for the autocorrelation function is derived in
Sec. III, whereas Sec. IV is devoted to the application of the
process as a model of some specific form of the correlated
noise in the generalized Langevin equation. The main results
are summarized in Sec. V.

II. DEFINITION OF THE PROCESS

We assume that the stochastic process is stepwise, i.e., a
process valuex is constant within the time intervals
sti ,ti+1d :xstd=xi for tP sti ,ti+1d. Jumping timesti are ran-
domly distributed and jumping ratensxd depends on the pro-
cess value. The size of the jump, defined as the difference
between the values ofx after and before the jump, is deter-
mined from a given probability distributionQsdxd. Then the
stochastic trajectoryxstd obeys the equation

xi+1 = xi + dx s1d

where the waiting timet= ti+1− ti is governed by the Poisso-
nian distribution

PPstd = nsxde−nsxdt, s2d

which determines the probability density that a jump occurs
in the intervalst ,t+dtd. The initial condition for Eq.(1),
xst0d=x0, follows from the given probability distribution
P0sxd. Equation(1) is stochastic because it determines the
time evolution of the stochastic variablex, in contrast to the
master equation which can give us only probability distribu-
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tions. The trajectoryxstd can be constructed step by step by
sampling consecutive values oft and dx from the distribu-
tions PP andQ, respectively.

The process is Markovian and stationary. The transition
probability ptrdx that the process value is betweenx and x
+dx at an infinitesimal timeDt, providing it was equal tox8
at t=0, is given by

ptrsx,Dtu,x8,0d = f1 − nsx8dDtgdsx8 − xd + nsx8dDtQsx − x8d.

s3d

In the above expression we have utilized the fact thatptr may
depend only on time differences. The first term on the right-
hand side of Eq.(3) is the probability that no jump occurred
in the time intervals0,Dtd. The term nsx8dDt means the
probability that one jump occurred. The master equation for
a probability densitypsx ,td can be obtained by calculating
the time derivative frompsx ,td and taking into account all
possible initial valuesx8:

]

] t
psx,td

= lim
Dt→0+

SE ptrsx,Dtux8,0dpsx8,tddx8 − psx,tdDYDt.

s4d

We get the master equation in the following form:

]

] t
psx,td = − nsxdpsx,td +E Qsx − x8dnsx8dpsx8,tddx8.

s5d

The jumping process described above is still too general
and thus we introduce additional restrictions. Letx be a two-
dimensional vector,x=sx1,x2d, with the unit lengthuxu=1.
Therefore we require the norm to be preserved during the
jumps. With these assumptions, the process can be described
in terms of a single angle variablef :x1=cossfd and x2

=sinsfd. For the probability densityQ we take the Gaussian

Qsdxd , e−sx − x8d2/2s2
= Necossf−f8d/s2

, s6d

wheres is a given width and the normalization constantN
=1/f2pI0s1/s2dg contains the modified Bessel function. The
other quantity defining the process is the jumping raten
which we assume in the following form:

nsfd =
4

1 − a

usinsfdua

ucossfdu
s7d

where 0,a,1. We will demonstrate in Sec. III that the
expression(7) corresponds to a process with power-law au-
tocorrelation function for large times. Taking into account
the above assumptions, we obtain the master equation(5) in
the one-dimensional form

]

] t
psf,td = − nsfdpsf,td +E

0

2p

Qsf − f8dnsf8dpsf8,tddf8.

s8d

The equilibrium solution of Eq.(8), Psfd, has to satisfy the
condition nsfdPsfd=const. Therefore,Psfd becomes quite
simple:

Psfd = 1/nsfd. s9d

Since for the jumping rate(7) e0
2p1/nsfddf=1, Psfd is

properly normalized.
Numerical simulation of stochastic trajectories requires

random numbers distributed likeQsdxd, according to Eq.(6).
For that purpose we apply the rejection method which allows
us to avoid evaluating complicated integrals. The algorithm
is the following. First we sample uniformly distributed ran-
dom numbersdf=f−f8 from the intervals0,2pd. Thenq
=Qsdfd is calculated and this value is compared with an-
other random numberrQ, uniformly distributed within the
interval sQmin,Qmaxd whereQmin andQmax denote the mini-
mum and maximum values ofQ, respectively. IfrQ.q then
df is accepted, otherwise it is rejected and the sampling
procedure is repeated.

III. AUTOCORRELATION FUNCTION
FOR THE JUMPING PROCESS

The autocorrelation function(ACF) of the process,Cstd
=kxs0dxstdl, where the average is taken over the stationary
distribution Psxd, can be evaluated from the following ex-
pression[18]:

Cstd =E E x8st0dxst0 + tdPsx,tux8dpsx8,t0ddx dx8. s10d

The conditional probability of passing fromx8 to x during
the timet , Psx ,t ux8d, can be obtained by taking into account
all possible paths leading fromx8 to x and summing over the
jumps [19]. The final formula for the Laplace transform of
the ACF can be expressed by the following series:

C̃ssd =E
0

2p 1

nsfd
1

nsfd + s
df

+E
0

2p Qsf − f8d
nsfd + s

cossf − f8d
nsf8d + s

df df8

+ o
k=2

` E
0

2p cossf − f0d
nsf0d + s

Qsf − fk−1d
nsfd + s

3Sp
i=2

k
Qsfi−1 − fi−2d

nsfi−1d + s
nsfi−1ddfi−1Ddf0df.

s11d

Inverting the Laplace transform we obtain the final expres-
sion for the ACF:
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Cstd = 4E
0

p/2 e−nsfdt

nsfd
df

+ 8NE
0

p/2E
0

p/2

secossf−f8d/s2
− e−cossf−f8d/s2

d

3cossf − f8d
e−nsf8dt − e−nsfdt

nsfd − nsf8d
df df8 + ¯ .

s12d

We are interested in the asymptotic behavior ofCstd for
larget. In this limit the first term of Eq.(12) can be estimated
easily. Because of the exponential dependence of the inte-
grand ont, only the vicinity of f=0 contributes to the inte-
gral: n&1/t. Therefore the first term can be approximated by
the integrale0

`exps−fatd /fadf, t1−1/a. In the second term
we first calculate the integral overf :e0

p/2se0
p/2dfddf8. If we

take the limit of larget in the inner integral, the exponential
containingf8 can be dropped. Moreovernsfd becomes neg-
ligible, compared tonsf8d, as well asf in the arguments of
the cosine function. Then for anyf8.0 we have

e−nsf8dt − e−nsfdt

nsfd − nsf8d
< e−fat/nsf8d

and the integral overf can be easily evaluated. The required
time dependence is of the formt−1/a which means that the
second term falls with time faster than the first one. The
same conclusion applies to the higher terms. The second
term has a simple asymptotic dependence also on the kernel
width s. Expanding the exponential functions over 1/s and
taking into account that limx→0I0sxd=1, we find that the sec-
ond term decreases like 1/s2 for large s. We finally con-
clude that the ACF can be well approximated by the first
term of Eq.(12) and its tail is algebraic:

Cstd , t1−1/a for t → `. s13d

Figure 1 presents ACF fora=0.5; Cstd was calculated

from the definition, by means of single trajectory evolution
according to Eq.(1), for s=1 ands=2.5. The equilibrium
probability distributionPsfd was taken as the initial condi-
tion. The result for the larger value ofs agrees very well
with the first term in Eq.(12) and it can be parametrized by
the function

Cstd =
1 − e−8t

8t
. s14d

The existence of long tails of the ACF means that the
power spectrum of the process, defined by the Fourier trans-
form Fsxd as Ssvd= uFsxdu2, is strongly enhanced atv=0.
The power spectrum can be obtained directly fromCstd by
using the Wiener-Khinchin theorem[18]: Ssvd=F(Cstd). For
0.5,a,1 we get the following result:

Ssvd , v−1/a. s15d

Then our jumping process is characterized by the algebraic
power spectrum and becomes 1/f noise fora→1. The over-
population of small frequency values is due to the fact that
the process is dominated by long waiting times between con-
secutive jumps. Such long intervals correspond to small val-
ues off, i.e., to evolution along thex1 axis. The quantitys
=1/n, which means the average of the Poissonian distribu-
tion (2), is well suited to characterize long rests. The statis-
tics of s is directly connected with the process value prob-
ability distribution Psfd and, in accordance with that, the
density distribution ofs in the equilibrium,cssd, can be de-
rived from the equationucssddsu= uPsfddfu. In the limit of
large s we obtaincssd,s−1/a and this result means that a
Poissonian waiting time distribution with variable jumping
rate can possess, effectively, power-law tails.

The jumping process witha=0.5 resembles a determinis-
tic dynamical system: a Lorentz gas of periodically distrib-
uted hard disks. In this lattice a particle is elastically re-
flected by the disks and wanders freely among them. The
free paths of the particle are infinite in directions parallel to
the symmetry axes. The system is characterized by the ve-
locity autocorrelation function with tail 1 /t, analogously to
Eq. (14), and by the power spectrumSsvd,ulnsvdu. How-
ever, the long free path distribution falls faster than its sto-
chastic counterpart, ass−3 [20].

IV. APPLICATION TO THE GENERALIZED LANGEVIN
EQUATION

If a Brownian particle is driven by a stochastic force with
a finite correlation time, the time evolution of the velocity
obeys the generalized Langevin equation[21,22]

m
dvstd

dt
= −

] Vsr d
] r

− mE
0

t

Kst − tdvstddt + Fstd s16d

whereVsr d is a position-dependent external potential,Fstd is
a stochastic force, andm denotes the mass of the particle.
The integro-differential equation(16) can be solved numeri-
cally for anyVsr d and any memory kernelKstd if we apply a
concrete model for the noiseFstd. In the caseVsr d=0 Eq.

FIG. 1. Autocorrelation functionCstd for the jumping raten
given by Eq. (7) with a=0.5. Numerical simulations have been
performed fors=2.5 (solid line) and s=1 (dotted line). The first
term in Eq.(12) is also shown(dashed line), as well as the param-
etrization by Eq.(14) (dash-dotted line).
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(16) is manageable by Laplace transforms. We obtain the
following solution:

vstd = Rstdvs0d + m−1E
0

t

Rst − tdFstddt, s17d

where the Laplace transform of the resolventRstd is given by
the equation

R̃ssd = 1/fs+ K̃ssdg. s18d

In Eq. (16) the usual damping term—proportional to the
velocity—that appears in the ordinary Langevin equation has
been substituted by the retarded friction in the form of the
memory kernel. In the caseVsrd=0, Eq. (16) characterizes
the equilibrium properly, satisfying the second fluctuation-
dissipation theorem[23]. Then the kernelKstd has to be pro-
portional to the noise ACFCstd :Kstd=Cstd /mkBT, whereT is
the temperature that characterizes the heat bath andkB is the
Boltzmann constant. The introduction of memory friction
changes the shape of the velocity autocorrelation function
considerably: it is no longer restricted to exponentials.

We wish to demonstrate how the process described in the
preceding sections can be applied as a model for the driving
stochastic force in Eq.(16). For that purpose we choose an
ACF possessing a tail,1/t which characterizes, e.g., noise-
induced Stark broadening[24] and nuclear collisions in the
framework of a dynamical model[25]. It can also be found
in problems connected with phenomena in disordered media
[5]. This form of ACF is of special importance for molecular
dynamics because it corresponds to the problem of scattering
inside a periodic lattice[26]. Let us then consider the ACF
given by Eq.(14). Moreover we assumekFstdl=0. In this

caseK̃ssd=lns1+8/sd /8 and Eq.(18) reads

R̃ssd =
1

s+ lns1 + 8/sd/8
. s19d

In order to obtain the resolventRstd we need to invert the
above transform. Computing the usual contour integral pro-
duces the following result:

Rstd = e−atsc1sinbt + c2cosbtd

− 8E
0

8 e−txdx

f8x − lns8/x − 1dg2 + p2 , s20d

where the constantsa=0.3511,b=0.2995,c1=0.2297, and
c2=1.603 follow from the numerical evaluation of poles in
Eq. (19). The resolventR has the interpretation of the veloc-
ity autocorrelation functionCv,

Cvstd = kvs0dvstdl =
kBT

m
Rstd. s21d

Rstd falls from Rs0d=1 to negative values and then rises,
approaching zero very slowly from below. The behavior of
Cvstd at t→` is determined by the integral in Eq.(20). In this
limit, it becomes simpler:,e0

8e−tx/ ln2x dx. Integrating overt
yields the integrand in the forme−tx/ sx ln2xd and the integral
overx can be estimated[19] as,1/ ln t. The final expression
reads

Cvstd ,
− 1

t ln2t
st → `d. s22d

Therefore the tail ofCvstd diminishes very slowly, like the
tail of Cstd, and it is negative.

The velocity autocorrelation function determines the
transport properties of the system: the diffusion coefficient
can be expressed in terms of the Laplace transform ofCvstd
in the form D= C̃vss=0d. Since forCstd given by Eq.(14)
D=0, the transport is subdiffusive. We come to the same
conclusion by the direct calculation of the position variance
kr 2lstd. IntegratingCvstd twice over time, we get the follow-
ing estimation:

kr 2lstd , li std < t/ln t st → `d. s23d

Therefore the deviation from normal diffusion is very small.
The same form of the anomalous diffusion has been found in
a chaotic(deterministic) system and it has been attributed to
intermittency[27,28].

Our aim is to study the motion of the particle by a direct
simulation of stochastic trajectories, assuming that the driv-
ing force in Eq.(16) is modeled by means of the stochastic
processxstd and satisfies Eq.(1). We restrict our analysis
to the caseVsr d=0. Inserting the solution of Eq.(1) into
Eq. (17) yields the two-dimensional trajectory of the particle
velocity:

vstd = Rstdvs0d

+ m−1Sxn+1E
0

t−tn

Rstddt + o
k=1

n

xkE
t−tk

t−tk−1

RstddtD , s24d

where by sampling of the consecutive jumping timestk we
apply Eq. (2) with a=0.5. Moreover, in the following we
take the kernel widths=2.5. A simple quantity one can
evaluate from Eq.(24) is the time dependence of the velocity
variancekv2stdl where the average is taken over the station-
ary distribution of the random force(9). Figure 2 presents
this quantity, calculated with the initial conditionvs0d=0, for
T=1 andm=1. On the other hand, the velocity variance can
be derived analytically from Eq.(24); the expression for

FIG. 2. The velocity variance calculated from Eq.(25) (solid
line) and by numerical simulation from Eq.(24) (dots). We assumed
vs0d=0, T=1, andm=1. The units are determined by the condition
kB=1.
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kv2stdl involves only the second moment of the noise:

kv2lstd = m−2E
0

t E
0

t

RstdRst8dCsut − t8uddt dt8. s25d

The velocity variance appears to be independent of a specific
noise model and the analytical and numerical results should
coincide. Indeed, Fig. 2 demonstrates very good agreement
of both results; they indicate relaxation to thermal equilib-
rium kv2l=kBT/m which is apparently reached at aboutt=4
[29].

In a similar way, utilizing Eq.(24), we can determine the
density distributionpsv ,td which means the probability that
the velocity of the Brownian particle is in the intervalsv ,v
+dvd. Figure 3 presents this distribution, corresponding to
the first velocity componentvx, for large times. The central
part of the distribution is equilibrated already att=5 but tails
are not yet developed; they terminate with high and narrow
peaks which originate from the initial conditionpsvx,0d
=dsvxd. At short times(not shown in the figure) the peaks are
still higher and expand gradually with time from the vicinity
of the pointvx=0. Full relaxation of the tails—which fall off
faster than the Gaussian—to the stationary distribution is
achieved att=20. Nevertheless, the memory of the initial
condition is preserved for a very long time. The distribution
of the second velocity componentvy, presented in Fig. 4,
looks different; the width is much smaller and the tails show
an exponential shape. A complete relaxation to the stationary
distribution is reached already att=10. The difference be-
tween the distributions for the two velocity components fol-
lows from anisotropy of the functionnsfd: there are no in-
finite waiting times corresponding to the motion in they
direction.

The energy spectrum of the Brownian particles deviates
considerably from the Maxwellian distribution. Figure 5 pre-
sents the time evolution of the probability density distribu-
tion of the energyE=0.5svx

2+vy
2d. At small values of the

energy the curves have a cusp, whereas the tail of the distri-
bution corresponding to the equilibrium state can be param-
etrized by the function 0.5 exps−0.5E2d sE.2d. It is interest-
ing that the probability density function which characterizes

the transport dynamics in the framework of the continuous-
time random walk predicts a similar cusp for subdiffusive
motion [2].

V. SUMMARY AND DISCUSSION

The jumping process presented in this paper is character-
ized by the jump size probability distribution and the waiting
time distribution, which are mutually correlated. The jump-
ing rate depends on the process value, which is kept constant
between consecutive jumps. The process is Markovian and
stationary; the corresponding master equation possesses a
nontrivial time-independent solution which is completely de-
termined by the jumping rate and which does not depend on
the jump size distribution. We have studied the process in its
two-dimensional version for jumps that do not change the
norm of the process value. An expression for the ACF with
power-law tails has been derived. We have demonstrated that
it is possible to construct in a simple way a process which is
a 1/f-like noise.

Despite the fact that the waiting time distribution is expo-
nential, the intervals of constant process values can be very
long and actually algebraically distributed. This conclusion is
not surprising because the mean value of the exponential
distribution is also a stochastic variable. Then the existence
of long tails of the waiting time distribution does not rule out
a relaxation to equilibrium.

FIG. 3. Time evolution of the probability density distribution of
the first velocity componentvx. The stochastic ensemble consists of
53106 trajectories for each time.

FIG. 4. The same as Fig. 3 except for the second velocity com-
ponentvy.

FIG. 5. Time evolution of the probability density distribution of
the energyE=0.5svx

2+vy
2d.

STOCHASTIC EQUATION FOR A JUMPING PROCESS… PHYSICAL REVIEW E 70, 051102(2004)

051102-5



The considered jumping process resembles the KP be-
cause its waiting time distribution also depends on the pro-
cess value. However, since the probability densityQ in-
volves the values both after and before the jump, memory is
not lost due to a single jump. In the KP the consecutive
jumps are completely independent of each other; the kernel
in the master equation factorizes, as well as the conditional
probability of passing between arbitrary process values dur-
ing a given time interval. This feature makes the KP very
simple and easily manageable but not very realistic.

The procedure described in this paper allows us to con-
struct stochastic trajectories corresponding to a wide class of
power-law ACF’s in a simple manner. Therefore it can serve
as a model of physical phenomena and can be used as a
stochastic force in the generalized Langevin equation. In
principle, the KP—which is simpler—can also be used for
that purpose. Unfortunately, the generalized Langevin equa-
tion solution, simulated in this way, does not relax to thermal
equilibrium for power-law distributions[16,30] although the
fluctuation-dissipation theorem is satisfied. This apparently
paradoxical result follows from the fact that the waiting time
distribution changes its shape whenxstd is evaluated not step
by step but at a timet given a priori. Such a procedure
entails a bias in the process variable distribution which is
strengthened by the divergent moments. The stochastic tra-

jectory xstd for the process presented in this paper is con-
structed by sampling jump sizes, i.e., the increments of the
process variable, not the variable itself, and thus the above
paradox does not appear. Therefore in most cases this pro-
cess is much better suited than the KP as a model of strongly
correlated noises for the generalized Langevin equation.

We have solved this equation for an exemplary form of
the ACF,,1/t, utilizing our process. Since waiting times are
correlated with the direction of the noise vector, the resulting
velocity distribution exhibits a strong anisotropy. The distri-
bution of the first component, corresponding to long waiting
times, has rapidly falling tails and indicates an extremely
long memory about the initial condition, despite the fact that
the comprehensive shape of the distribution equilibrates rela-
tively fast. On the other hand, the tails of the distribution
corresponding to the second component coincide with the
standard Gaussian.

The tail of the ACF is determined predominantly by the
long waiting times and thus only one component of the pro-
cess value is crucial for its shape. Therefore, this component
can constitute a one-dimensional counterpart of our two-
dimensional jumping process which still has a power-law
ACF. This remark is important if one requires a model of
noise possessing an arbitrary dimensionality.
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